Hierarchical priors and mixture models, with applications in regression and density estimation
نویسندگان
چکیده
منابع مشابه
Bayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملDefault priors for density estimation with mixture models
The infinite mixture of normals model has become a popular method for density estimation problems. This paper proposes an alternative hierarchical model that leads to hyperparameters that can be interpreted as the location, scale and smoothness of the density. The priors on other parts of the model have little effect on the density estimates and can be given default choices. Automatic Bayesian ...
متن کاملRegression , Density and Spectral Density Estimation
We consider posterior inference in wavelet based models for non-parametric regression with unequally spaced data, density estimation and spectral density estimation. The common theme in all three applications is the lack of posterior independence for the wavelet coe cients djk . In contrast, most commonly considered applications of wavelet decompositions in Statistics are based on a setup which...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کامل